3.328 \(\int \frac {\tan ^2(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx\)

Optimal. Leaf size=86 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{\sqrt {b} f}-\frac {\tan ^{-1}\left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f \sqrt {a-b}} \]

[Out]

-arctan((a-b)^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/f/(a-b)^(1/2)+arctanh(b^(1/2)*tan(f*x+e)/(a+b*tan(f*x
+e)^2)^(1/2))/f/b^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3670, 483, 217, 206, 377, 203} \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{\sqrt {b} f}-\frac {\tan ^{-1}\left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f \sqrt {a-b}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^2/Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-(ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]]/(Sqrt[a - b]*f)) + ArcTanh[(Sqrt[b]*Tan[e + f*
x])/Sqrt[a + b*Tan[e + f*x]^2]]/(Sqrt[b]*f)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 483

Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_)^(n_))^(q_.))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Dist[e^n/b, Int[
(e*x)^(m - n)*(c + d*x^n)^q, x], x] - Dist[(a*e^n)/b, Int[((e*x)^(m - n)*(c + d*x^n)^q)/(a + b*x^n), x], x] /;
 FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1] && IntBinomialQ[a, b
, c, d, e, m, n, -1, q, x]

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \frac {\tan ^2(e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^2}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}-\frac {\operatorname {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}-\frac {\operatorname {Subst}\left (\int \frac {1}{1-(-a+b) x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}\\ &=-\frac {\tan ^{-1}\left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{\sqrt {a-b} f}+\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{\sqrt {b} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.79, size = 149, normalized size = 1.73 \[ \frac {a \sin (2 (e+f x)) \csc ^2(e+f x) \sqrt {\sec ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)} \Pi \left (-\frac {b}{a-b};\left .\sin ^{-1}\left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right )\right |1\right )}{2 b f (a-b) \sqrt {\frac {\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^2/Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

(a*Csc[e + f*x]^2*EllipticPi[-(b/(a - b)), ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/
Sqrt[2]], 1]*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[e + f*x]^2]*Sin[2*(e + f*x)])/(2*(a - b)*b*f*Sqrt[((a
 + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b])

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 479, normalized size = 5.57 \[ \left [\frac {{\left (a - b\right )} \sqrt {b} \log \left (2 \, b \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {b} \tan \left (f x + e\right ) + a\right ) - \sqrt {-a + b} b \log \left (-\frac {{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b} \tan \left (f x + e\right ) - a}{\tan \left (f x + e\right )^{2} + 1}\right )}{2 \, {\left (a b - b^{2}\right )} f}, -\frac {2 \, {\left (a - b\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-b}}{b \tan \left (f x + e\right )}\right ) + \sqrt {-a + b} b \log \left (-\frac {{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b} \tan \left (f x + e\right ) - a}{\tan \left (f x + e\right )^{2} + 1}\right )}{2 \, {\left (a b - b^{2}\right )} f}, -\frac {2 \, \sqrt {a - b} b \arctan \left (-\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a}}{\sqrt {a - b} \tan \left (f x + e\right )}\right ) - {\left (a - b\right )} \sqrt {b} \log \left (2 \, b \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {b} \tan \left (f x + e\right ) + a\right )}{2 \, {\left (a b - b^{2}\right )} f}, -\frac {\sqrt {a - b} b \arctan \left (-\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a}}{\sqrt {a - b} \tan \left (f x + e\right )}\right ) + {\left (a - b\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-b}}{b \tan \left (f x + e\right )}\right )}{{\left (a b - b^{2}\right )} f}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^2/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*((a - b)*sqrt(b)*log(2*b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(b)*tan(f*x + e) + a) - sqrt(-
a + b)*b*log(-((a - 2*b)*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)*tan(f*x + e) - a)/(tan(f*x
 + e)^2 + 1)))/((a*b - b^2)*f), -1/2*(2*(a - b)*sqrt(-b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-b)/(b*tan(f*x
 + e))) + sqrt(-a + b)*b*log(-((a - 2*b)*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)*tan(f*x +
e) - a)/(tan(f*x + e)^2 + 1)))/((a*b - b^2)*f), -1/2*(2*sqrt(a - b)*b*arctan(-sqrt(b*tan(f*x + e)^2 + a)/(sqrt
(a - b)*tan(f*x + e))) - (a - b)*sqrt(b)*log(2*b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(b)*tan(f*x
 + e) + a))/((a*b - b^2)*f), -(sqrt(a - b)*b*arctan(-sqrt(b*tan(f*x + e)^2 + a)/(sqrt(a - b)*tan(f*x + e))) +
(a - b)*sqrt(-b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-b)/(b*tan(f*x + e))))/((a*b - b^2)*f)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \left (f x + e\right )^{2}}{\sqrt {b \tan \left (f x + e\right )^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^2/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(tan(f*x + e)^2/sqrt(b*tan(f*x + e)^2 + a), x)

________________________________________________________________________________________

maple [A]  time = 0.33, size = 102, normalized size = 1.19 \[ \frac {\ln \left (\tan \left (f x +e \right ) \sqrt {b}+\sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}\right )}{f \sqrt {b}}-\frac {\sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {\left (a -b \right ) b^{2} \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}\right )}{f \,b^{2} \left (a -b \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^2/(a+b*tan(f*x+e)^2)^(1/2),x)

[Out]

1/f*ln(tan(f*x+e)*b^(1/2)+(a+b*tan(f*x+e)^2)^(1/2))/b^(1/2)-1/f*(b^4*(a-b))^(1/2)/b^2/(a-b)*arctan((a-b)*b^2/(
b^4*(a-b))^(1/2)/(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \left (f x + e\right )^{2}}{\sqrt {b \tan \left (f x + e\right )^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^2/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(tan(f*x + e)^2/sqrt(b*tan(f*x + e)^2 + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {tan}\left (e+f\,x\right )}^2}{\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)^2/(a + b*tan(e + f*x)^2)^(1/2),x)

[Out]

int(tan(e + f*x)^2/(a + b*tan(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan ^{2}{\left (e + f x \right )}}{\sqrt {a + b \tan ^{2}{\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**2/(a+b*tan(f*x+e)**2)**(1/2),x)

[Out]

Integral(tan(e + f*x)**2/sqrt(a + b*tan(e + f*x)**2), x)

________________________________________________________________________________________